Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Brain Res ; 1753: 147257, 2021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-33422529

RESUMO

Traumatic brain injury (TBI) frequently causes cardiac autonomic dysfunction (CAD), irrespective of its severity, which is associated with an increased morbidity and mortality in patients. Despite the significance of probing the cellular mechanism underlying TBI-induced CAD, animal studies on this mechanism are lacking. In the current study, we tested whether TBI-induced CAD is associated with functional plasticity in cardiac efferent neurons. In this regard, TBI was induced by a controlled cortical impact in rats. Assessment of heart rate variability and baroreflex sensitivity indicated that CAD was developed in the sub-acute period after moderate and severe TBI. The cell excitability was increased in the stellate ganglion (SG) neurons and decreased in the intracardiac ganglion (ICG) neurons in TBI rats, compared with the sham-operated rats. The transient A-type K+ (KA) currents, but not the delayed rectifying K+ currents were significantly decreased in SG neurons in TBI rats, compared with sham-operated rats. Consistent with these electrophysiological data, the transcripts encoding the Kv4 α subunits were significantly downregulated in SG neurons in TBI rats, compared with sham-operated rats. TBI causes downregulation and upregulation of M-type K+ (KM) currents and the KCNQ2 mRNA transcripts, which may contribute to the hyperexcitability of the SG neurons and the hypoexcitability of the ICG neurons, respectively. In conclusion, the key cellular mechanism underlying the TBI-induced CAD may be the functional plasticity of the cardiac efferent neurons, which is caused by the regulation of the KA and/or KM currents.


Assuntos
Sistema Nervoso Autônomo/fisiopatologia , Lesões Encefálicas Traumáticas/fisiopatologia , Coração/fisiopatologia , Plasticidade Neuronal/fisiologia , Animais , Doenças do Sistema Nervoso Autônomo/fisiopatologia , Modelos Animais de Doenças , Fenômenos Eletrofisiológicos/fisiologia , Masculino , Neurônios/fisiologia , Ratos Sprague-Dawley
2.
Am J Physiol Regul Integr Comp Physiol ; 310(11): R1088-101, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-26984890

RESUMO

Cardiovascular autonomic dysfunction, which is manifested by an impairment of the arterial baroreflex, is prevalent irrespective of etiology and contributes to the increased morbidity and mortality in cirrhotic patients. However, the cellular mechanisms that underlie the cirrhosis-impaired arterial baroreflex remain unknown. In the present study, we examined whether the cirrhosis-impaired arterial baroreflex is attributable to the dysfunction of aortic baroreceptor (AB) neurons. Biliary and nonbiliary cirrhotic rats were generated via common bile duct ligation (CBDL) and intraperitoneal injections of thioacetamide (TAA), respectively. Histological and molecular biological examinations confirmed the development of fibrosis in the livers of both cirrhotic rat models. The heart rate changes during phenylephrine-induced baroreceptor activation indicated that baroreflex sensitivity was blunted in the CBDL and TAA rats. Under the current-clamp mode of the patch-clamp technique, cell excitability was recorded in DiI-labeled AB neurons. The number of action potential discharges in the A- and C-type AB neurons was significantly decreased because of the increased rheobase and threshold potential in the CBDL and TAA rats compared with sham-operated rats. Real-time PCR and Western blotting indicated that the NaV1.7, NaV1.8, and NaV1.9 transcripts and proteins were significantly downregulated in the nodose ganglion neurons from the CBDL and TAA rats compared with the sham-operated rats. Consistent with these molecular data, the tetrodotoxin-sensitive NaV currents and the tetrodotoxin-resistant NaV currents were significantly decreased in A- and C-type AB neurons, respectively, from the CBDL and TAA rats compared with the sham-operated rats. Taken together, these findings implicate a key cellular mechanism in the cirrhosis-impaired arterial baroreflex.


Assuntos
Barorreflexo , Pressão Sanguínea , Insuficiência Cardíaca/fisiopatologia , Cirrose Hepática/fisiopatologia , Pressorreceptores/metabolismo , Canais de Sódio Disparados por Voltagem/metabolismo , Animais , Doenças do Sistema Nervoso Autônomo , Insuficiência Cardíaca/etiologia , Ativação do Canal Iônico , Cirrose Hepática/complicações , Masculino , Ratos , Ratos Sprague-Dawley , Sódio/metabolismo
3.
Biochem Biophys Res Commun ; 463(4): 632-7, 2015 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-26043693

RESUMO

We investigated whether endogenous neuregulin 1 (NRG1) is released in a soluble form (called sNRG1) and upregulates expression of nicotinic acetylcholine receptor (nAChR) in autonomic major pelvic ganglion (MPG) neurons of adult rats. To elicit the release of sNRG1, either the hypogastric nerve or the pelvic nerve was electrically stimulated. Then, the MPG-conditioned medium (CM) was subjected to western blotting using an antibody directed against the N-terminal ectodomain of NRG1. Both sympathetic and parasympathetic nerve activation elicited the release of sNRG1 from MPG neurons in a frequency-dependent manner. The sNRG1 release was also induced by treatment of MPG neurons with either high KCl or neurotrophic factors. The biological activity of the released sNRG1 was detected by tyrosine phosphorylation (p185) of the ErbB2 receptors in MPG neurons. When MPG neurons were incubated for 6 h in the CM, the protein level of the nAChR α3 subunit and ACh-induced current (IACh) density were significantly increased. The CM-induced changes in IACh was abolished by a selective ErbB2 tyrosine kinase inhibitor. Taken together, these data suggest that NRG1 functions as an endogenous regulator of nAChR expression in adult MPG neurons.


Assuntos
Cistos Glanglionares/fisiopatologia , Neuregulina-1/fisiologia , Neurônios/fisiologia , Pelve , Receptores Nicotínicos/fisiologia , Idoso , Animais , Estimulação Elétrica , Humanos , Masculino , Ratos , Ratos Sprague-Dawley
4.
Brain Res ; 1602: 111-8, 2015 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-25625357

RESUMO

Pelvic ganglion (PG) neurons relay sympathetic and parasympathetic signals to the lower urinary tract, comprising the urinary bladder and bladder outlet, and are thus essential for both storage and voiding reflexes. Autonomic transmission is mediated by activation of the nicotinic acetylcholine receptor (nAChR) in PG neurons. Previously, bladder outlet obstruction (BOO), secondary to benign prostatic hyperplasia, was found to increase soma sizes of bladder-projecting PG neurons. To date, however, it remains unknown whether these morphological changes are accompanied by functional plasticity in PG neurons. In the present study, we investigated whether BOO alters acetylcholine receptor (nAChR) transcript expression and current density in bladder PG neurons. Partial ligation of the rat urethra for six weeks induced detrusor overactivity (DO), as observed during cystometrical measurement. In rats exhibiting DO, membrane capacitance of parasympathetic bladder PG neurons was selectively increased. Real-time PCR analysis revealed that BOO enhanced the expression of the transcripts encoding the nAChR α3 and ß4 subunits in PG neurons. Notably, BOO significantly increased ACh-evoked current density in parasympathetic bladder PG neurons, whereas no changes were observed in sympathetic bladder and parasympathetic penile PG neurons. In addition, other ligand-gated ionic currents were immune to BOO in bladder PG neurons. Taken together, these data suggest that BOO causes upregulation of nAChR in parasympathetic bladder PG neurons, which in turn may potentiate ganglionic transmission and contribute to the development of DO.


Assuntos
Neurônios/metabolismo , Receptores Nicotínicos/metabolismo , Obstrução do Colo da Bexiga Urinária/metabolismo , Bexiga Urinária Hiperativa/metabolismo , Bexiga Urinária/diagnóstico por imagem , Animais , Membrana Celular/fisiologia , Modelos Animais de Doenças , Capacitância Elétrica , Masculino , Técnicas de Rastreamento Neuroanatômico , Neurônios/patologia , Fibras Parassimpáticas Pós-Ganglionares/metabolismo , Fibras Parassimpáticas Pós-Ganglionares/patologia , Técnicas de Patch-Clamp , Pênis/inervação , Cintilografia , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase em Tempo Real , Fibras Simpáticas Pós-Ganglionares/metabolismo , Fibras Simpáticas Pós-Ganglionares/patologia , Regulação para Cima , Bexiga Urinária/patologia , Obstrução do Colo da Bexiga Urinária/patologia , Bexiga Urinária Hiperativa/patologia
5.
J Neurochem ; 124(4): 502-13, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23199222

RESUMO

We investigated effects of Neuregulin 1 (NRG1) on the expression of nicotinic acetylcholine receptor (nAChR) in major pelvic ganglion (MPG) from adult rat. MPG neurons were found to express transcripts for type I and III NRG1s as well as α and ß-type epidermal growth factor (EGF)-like domains. Of the four ErbB receptor isoforms, ErbB1, ErbB2, and ErbB3 were expressed in MPG neurons. Treating MPG with NRG1ß significantly increased the transcript and protein level of the nAChR α3 and ß4 subunits. Consistent with these molecular data, nicotinic currents (I(ACh) ) were significantly up-regulated in NRG1ß-treated sympathetic and parasympathetic MPG neurons. In contrast, the type III NRG1 and the α form of the NRG1 failed to alter the I(ACh) . Inhibition of the ErbB2 tyrosine kinase completely abolished the effects of NRG1ß on the I(ACh) . Stimulation of the ErbB receptors by NRG1ß activated the phosphatidylinositol-3-kinase (PI3K) and mitogen-activated protein kinase (MAPK). Immunoblot analysis revealed that PI3K-mediated activation of Akt preceded Erk1/2 activation in NRG1ß-treated MPG neurons. Furthermore, specific PI3K inhibitors abrogated the phosphorylation of Erk1/2, while inhibition of MEK did not prevent the phosphorylation of Akt. Taken together, these findings suggest that NRG1 up-regulates nAChR expression via the ErbB2/ErbB3-PI3K-MAPK signaling cascade and may be involved in maintaining the ACh-mediated synaptic transmission in adult autonomic ganglia.


Assuntos
Gânglios Autônomos/citologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Neuregulina-1/farmacologia , Neurônios/efeitos dos fármacos , Receptores Nicotínicos/metabolismo , Regulação para Cima/efeitos dos fármacos , Acetilcolina/farmacologia , Animais , Cicloeximida/farmacologia , Inibidores Enzimáticos/farmacologia , Masculino , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/genética , Proteína Quinase 3 Ativada por Mitógeno/genética , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Técnicas de Patch-Clamp , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Inibidores da Síntese de Proteínas/farmacologia , Ratos , Ratos Sprague-Dawley , Receptor ErbB-2/genética , Receptor ErbB-2/metabolismo , Receptor ErbB-3/genética , Receptor ErbB-3/metabolismo , Fatores de Tempo
6.
Neurosci Lett ; 501(1): 55-9, 2011 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-21782342

RESUMO

Pelvic ganglia (PG) play critical roles in relaying sympathetic and parasympathetic information from the spinal cord to the penile vasculature and, controlling the penile reflex. Animal studies have shown that androgen deprivation by castration causes erectile dysfunction (ED). Until now, however, neural mechanisms underlying castration-induced ED remain unclear. Therefore, we examined whether androgen deprivation down-regulates nicotinic acetylcholine receptors (nAchRs), which mediate fast excitatory synaptic transmission in the PG. Toward this end, neurogenic ED was demonstrated by measuring the intracavernous pressure in castrated rats. Real-time PCR analysis revealed that the transcripts encoding nAchR α3/α5/ß4 subunits were significantly down-regulated in the PG neurons. In addition, down-regulation of the nAchR subunits was reversed by replacement of testosterone. Patch-clamp experiments showed that the nAchR currents were selectively attenuated in the parasympathetic PG neurons innervating the penile vasculature, activation of which elicits penile erection. Taken together, our data suggest that phenotype-specific down-regulation of nAchRs in the PG neurons may contribute to the neurogenic ED in castrated rats.


Assuntos
Regulação para Baixo , Gânglios Parassimpáticos/metabolismo , Gânglios Simpáticos/metabolismo , Pelve/inervação , Ereção Peniana/fisiologia , Receptores Nicotínicos/genética , Animais , Disfunção Erétil/etiologia , Disfunção Erétil/genética , Disfunção Erétil/metabolismo , Masculino , Orquiectomia , Ratos , Ratos Sprague-Dawley , Receptores Nicotínicos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...